The performance of optimization algorithms relies crucially on their parameterizations. Finding good parameter settings is called algorithm tuning. The sequential parameter optimization (SPOT) package for R is a toolbox for tuning and understanding simulation and optimization algorithms. Model-based investigations are common approaches in simulation and optimization. Sequential parameter optimization has been developed, because there is a strong need for sound statistical analysis of simulation and optimization algorithms. SPOT includes methods for tuning based on classical regression and analysis of variance techniques; tree-based models such as CART and random forest; Gaussian process models (Kriging), and combinations of different meta-modeling approaches. Using a simple simulated annealing algorithm, we will demonstrate how optimization algorithms can be tuned using SPOT. The underling concepts of the SPOT approach are explained. This includes key techniques such as exploratory fitness landscape analysis and sensititvity analysis. Many examples illustrate how SPOT can be used for understanding the performance of algorithms and gaining insight into algorithm's behavior. Furthermore, we demonstrate how SPOT can be used as an optimizer and how a sophisticated ensemble approach is able to combine several meta models via stacking. This article exemplifies how SPOT can be used for automatic and interactive tuning.


翻译:优化算法的性能主要取决于它们的参数化。 寻找良好的参数设置称为算法调整。 R 的顺序参数优化(SPOT) 软件包是调制和理解模拟和优化算法的工具箱。 模型调查是模拟和优化的共同方法。 已经开发了序列参数优化, 因为非常需要对模拟和优化算法进行健全的统计分析。 SPOT 包含基于经典回归和分析差异计算法的调试方法; 树基模型, 如 CART 和随机森林; 高萨进程模型( Krigging) 和不同元模型方法的组合。 我们使用简单的模拟反射算法, 我们将演示如何使用SPOT来调整优化算法。 解释了SPOT 方法下的概念。 这包括探索性健康景观分析和敏锐性分析等关键技术。 许多例子说明SPOT如何能够用来理解算法的性能和获得对算法行为的洞察力。 此外, 我们演示如何将SPOT进程模型(Kriging)用作一种优化的模拟, 以及如何将精密的SPOT 版本方法用于模拟。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】机器学习Primer,122页pdf
专知会员服务
106+阅读 · 2020年10月5日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年4月23日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】机器学习Primer,122页pdf
专知会员服务
106+阅读 · 2020年10月5日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员