The performance of optimization algorithms relies crucially on their parameterizations. Finding good parameter settings is called algorithm tuning. The sequential parameter optimization (SPOT) package for R is a toolbox for tuning and understanding simulation and optimization algorithms. Model-based investigations are common approaches in simulation and optimization. Sequential parameter optimization has been developed, because there is a strong need for sound statistical analysis of simulation and optimization algorithms. SPOT includes methods for tuning based on classical regression and analysis of variance techniques; tree-based models such as CART and random forest; Gaussian process models (Kriging), and combinations of different meta-modeling approaches. Using a simple simulated annealing algorithm, we will demonstrate how optimization algorithms can be tuned using SPOT. The underling concepts of the SPOT approach are explained. This includes key techniques such as exploratory fitness landscape analysis and sensititvity analysis. Many examples illustrate how SPOT can be used for understanding the performance of algorithms and gaining insight into algorithm's behavior. Furthermore, we demonstrate how SPOT can be used as an optimizer and how a sophisticated ensemble approach is able to combine several meta models via stacking. This article exemplifies how SPOT can be used for automatic and interactive tuning.
翻译:优化算法的性能主要取决于它们的参数化。 寻找良好的参数设置称为算法调整。 R 的顺序参数优化(SPOT) 软件包是调制和理解模拟和优化算法的工具箱。 模型调查是模拟和优化的共同方法。 已经开发了序列参数优化, 因为非常需要对模拟和优化算法进行健全的统计分析。 SPOT 包含基于经典回归和分析差异计算法的调试方法; 树基模型, 如 CART 和随机森林; 高萨进程模型( Krigging) 和不同元模型方法的组合。 我们使用简单的模拟反射算法, 我们将演示如何使用SPOT来调整优化算法。 解释了SPOT 方法下的概念。 这包括探索性健康景观分析和敏锐性分析等关键技术。 许多例子说明SPOT如何能够用来理解算法的性能和获得对算法行为的洞察力。 此外, 我们演示如何将SPOT进程模型(Kriging)用作一种优化的模拟, 以及如何将精密的SPOT 版本方法用于模拟。