A new type of quadrature is developed. The Gaussian quadrature, for a given measure, finds optimal values of a function's argument (nodes) and the corresponding weights. In contrast, the Lebesgue quadrature developed in this paper, finds optimal values of function (value-nodes) and the corresponding weights. The Gaussian quadrature groups sums by function argument; it can be viewed as a $n$-point discrete measure, producing the Riemann integral. The Lebesgue quadrature groups sums by function value; it can be viewed as a $n$-point discrete distribution, producing the Lebesgue integral. Mathematically, the problem is reduced to a generalized eigenvalue problem: Lebesgue quadrature value-nodes are the eigenvalues and the corresponding weights are the square of the averaged eigenvectors. A numerical estimation of an integral as the Lebesgue integral is especially advantageous when analyzing irregular and stochastic processes. The approach separates the outcome (value-nodes) and the probability of the outcome (weight). For this reason, it is especially well-suited for the study of non-Gaussian processes. The software implementing the theory is available from the authors.
翻译:开发了新的二次曲线类型。 Gaussian 二次曲线, 对于给定的度量, 找到函数参数参数( 节点) 和相应重量的最佳值。 相反, 本文中开发的 Lebesgue 二次曲线, 找到了函数( 数值- 节点) 和相应重量的最佳值。 高斯二次曲线组以函数参数来计算; 它可以被视为一个 $- 点的离散测量, 生成 Riemann 集成 。 Lebesgue 二次曲线组以函数值来计算; 它可以被视为函数值的美元点离散分布, 生成 Lebesgue 整体值。 相比之下, 问题已降为通用的二次数值问题 : 白斯gue 二次曲线值值值和相应重量组为平均二次曲线的平方。 在分析非常规和随机进程时, 将一个整体组合值组群数的数值组数值组数特别有利。 方法将结果( 数值- 值- 分值- ) 和结果的理论( 特别是软件的概率 ) 。