We study applications of clustering (in particular, the $k$-center clustering problem) in the design of efficient and practical algorithms for computing an approximate and the exact arithmetic matrix product of two 0-1 rectangular matrices with clustered rows or columns, respectively. Our results in part can be regarded as an extension of the clustering-based approach to Boolean square matrix multiplication due to Arslan and Chidri (CSC 2011). First, we provide a simple and efficient deterministic algorithm for approximate matrix product of 0-1 matrices, where the additive error is proportional to the minimum maximum radius in an $\ell$-center clustering of the rows of the first matrix or an $k$-center clustering of the columns of the second matrix. Next, we use the approximation algorithm as a preprocessing after which a query asking for the exact value of an arbitrary entry in the product matrix can be answered in time proportional to the additive error. As a consequence, we obtain a simple deterministic algorithm for the exact matrix product of 0-1 matrices. We also present an improved simple deterministic algorithm for the exact product and in addition, faster analogous randomized algorithms for an approximate and the exact matrix products of 0-1 matrices based on randomized $\ell$ and $k$-center clustering.
翻译:本文研究聚类(特别是$k$-中心聚类问题)在设计与实现高效实用算法中的应用,用于计算两个0-1矩形矩阵在行或列分别具有聚类结构时的近似及精确算术矩阵乘积。我们的部分结果可视为对Arslan与Chidri(CSC 2011)提出的基于聚类的布尔方阵乘法方法的扩展。首先,我们提出一种简单高效的确定性算法用于计算0-1矩阵的近似乘积,其加法误差与第一个矩阵行向量的$\ell$-中心聚类或第二个矩阵列向量的$k$-中心聚类的最小最大半径成正比。接着,我们将该近似算法作为预处理步骤,使得针对乘积矩阵中任意元素精确值的查询可在与加法误差成正比的时间内完成。由此,我们得到一种计算0-1矩阵精确乘积的简单确定性算法。此外,我们提出一种改进的简单确定性精确乘积算法,并基于随机化$\ell$与$k$-中心聚类,设计了更快速的随机化算法用于计算0-1矩阵的近似及精确乘积。