While the evolution of linear initial conditions present in the early universe into extended halos of dark matter at late times can be computed using cosmological simulations, a theoretical understanding of this complex process remains elusive. Here, we build a deep learning framework to learn this non-linear relationship, and develop techniques to physically interpret the learnt mapping. A three-dimensional convolutional neural network (CNN) is trained to predict the mass of dark matter halos from the initial conditions. N-body simulations follow the microphysical laws of gravity, whereas the CNN model provides a simplified description of halo collapse where features are extracted from the initial conditions through convolutions and combined in a non-linear way to provide a halo mass prediction. We find no significant change in the predictive accuracy of the model if we retrain it removing anisotropic information from the inputs, suggesting that the features learnt by the CNN are equivalent to spherical averages over the initial conditions. Despite including all possible feature combinations that can be extracted by convolutions in the model, the final halo mass predictions do not depend on anisotropic aspects of the initial conditions. Our results indicate that deep learning frameworks can provide a powerful tool for extracting physical insight into cosmological structure formation.
翻译:虽然早期宇宙中存在的线性初始条件在后期演变成深物质大洞,可以通过宇宙模拟来计算,但对这一复杂过程的理论理解仍然难以实现。在这里,我们建立了一个深学习框架,以学习这种非线性关系,并开发对所学绘图进行物理解释的技术。一个三维进化神经网络(CNN)经过培训,从初始条件中预测暗物质大洞的质量。N-体模拟遵循微物理重力定律,而CNN模型则提供了对光圈崩塌的简化描述,其中地貌从初始条件中通过熔化和以非线性方式结合得出,以提供卤光质量预测。我们发现模型的预测准确性没有重大变化,如果我们重新将它从投入中去除厌食性信息,就意味着CNN所学的特征相当于初始条件的球状平均数。尽管包含所有可能的地貌组合,可以通过模型的相变法提取出来,但最后的海藻质量预测并不取决于物理进化过程的亚化方面。我们发现模型的深度学习结果显示,为物理进化的宇宙结构提供了一种深层次学习工具。