We study colored coverage and clustering problems. Here, we are given a colored point set, where the points are covered by (unknown) $k$ clusters, which are monochromatic (i.e., all the points covered by the same cluster, have the same color). The access the colors of the points (or even the points themselves) is provided indirectly via various queries (such as nearest neighbor, or separation queries). We show that one can correctly deduce the color of all the points (i.e., compute a monochromatic clustering of the points) using a polylogarithmic number of queries, if the number of clusters is a constant. We investigate several variants of this problem, including Undecided Linear Programming, covering of points by $k$ monochromatic balls, covering by $k$ triangles/simplices, and terrain simplification. For the later problem, we present the first near linear time approximation algorithm. While our approximation is slightly worse than previous work, this is the first algorithm to have subquadratic complexity if the terrain has "small" complexity.


翻译:我们研究彩色覆盖和集成问题。 这里, 我们得到一个彩色的点, 点由( 未知的) $k$ 组群覆盖, 它们是单色的( 同一组群中包括的所有点, 都具有相同的颜色 ) 。 点的颜色( 甚至是点本身 ) 通过不同的查询( 如最近的邻居, 或分隔查询 ) 间接提供 。 我们显示, 我们能够正确推断所有点的颜色( 即, 计算点的单色组合 ), 使用多色数的查询( 未知的) 。 如果组群的数量是恒定的 。 我们调查了这个问题的几种变种, 包括未确定线性线性编程, 覆盖以 $ 美元 单色球覆盖的点, 以 $k 三角/ simplices 覆盖, 和地形简化 。 对于后期的问题, 我们提出第一个接近线性时间近算法 。 虽然我们的近似比先前的工作要差一点, 但这是第一个算法, 如果地形“ 小复杂 ” 。

0
下载
关闭预览

相关内容

元学习(meta learning) 最新进展综述论文
专知会员服务
281+阅读 · 2020年5月8日
深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Arxiv
0+阅读 · 2021年5月10日
Arxiv
0+阅读 · 2021年5月5日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
相关论文
Arxiv
0+阅读 · 2021年5月10日
Arxiv
0+阅读 · 2021年5月5日
Arxiv
3+阅读 · 2016年2月24日
Top
微信扫码咨询专知VIP会员