In this paper, we make the first attempt towards defining cost function of steganography with large language models (LLMs), which is totally different from previous works that rely heavily on expert knowledge or require large-scale datasets for cost learning. To achieve this goal, a two-stage strategy combining LLM-guided program synthesis with evolutionary search is applied in the proposed method. In the first stage, a certain number of cost functions in the form of computer programs are synthesized from LLM responses to structured prompts. These cost functions are then evaluated with pretrained steganalysis models so that candidate cost functions suited to steganography can be collected. In the second stage, by retraining a steganalysis model for each candidate cost function, the optimal cost function(s) can be determined according to the detection accuracy. This two-stage strategy is performed by an iterative fashion so that the best cost function can be collected at the last iteration. Experiments show that the proposed method enables LLMs to design new cost functions of steganography that significantly outperform existing works in terms of resisting steganalysis tools, which verifies the superiority of the proposed method. To the best knowledge of the authors, this is the first work applying LLMs to the design of advanced cost function of steganography, which presents a novel perspective for steganography design and may shed light on further research.


翻译:本文首次尝试利用大语言模型(LLMs)定义隐写成本函数,该方法与以往严重依赖专家知识或需要大规模数据集进行成本学习的研究工作截然不同。为实现这一目标,所提方法采用结合LLM引导程序合成与进化搜索的两阶段策略。第一阶段,通过LLM对结构化提示的响应,合成出一定数量以计算机程序形式表示的成本函数。随后利用预训练的隐写分析模型对这些成本函数进行评估,从而筛选出适用于隐写任务的候选成本函数。第二阶段,通过为每个候选成本函数重新训练隐写分析模型,根据检测准确率确定最优成本函数。该两阶段策略以迭代方式执行,从而在最终迭代轮次获得最优成本函数。实验表明,所提方法能使LLMs设计出在抵抗隐写分析工具方面显著优于现有工作的新型隐写成本函数,验证了该方法的优越性。据作者所知,这是首次将LLMs应用于高级隐写成本函数设计的研究,为隐写设计提供了全新视角,并可能为后续研究带来启示。

0
下载
关闭预览

相关内容

【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
21+阅读 · 2024年6月11日
【NeurIPS2020】可处理的反事实推理的深度结构因果模型
专知会员服务
49+阅读 · 2020年9月28日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
在TensorFlow中对比两大生成模型:VAE与GAN
机器之心
12+阅读 · 2017年10月23日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
在TensorFlow中对比两大生成模型:VAE与GAN
机器之心
12+阅读 · 2017年10月23日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员