How can we develop visual analytics (VA) tools that can be easily adopted? Visualization researchers have developed a large number of web-based VA tools to help data scientists in a wide range of tasks. However, adopting these standalone systems can be challenging, as they require data scientists to create new workflows to streamline the VA processes. Recent surveys suggest computational notebooks have been dominating data scientists' analytical workflows, as these notebooks seamlessly combine text, code, and visualization, allowing users to rapidly iterate code experiments. To help visualization researchers develop VA tools that can be easily integrated into existing data science workflows, we present NOVA, a simple and flexible method to adapt web-based VA systems for notebooks. We provide detailed examples of using this method with diverse web development technologies and different types of computational notebooks. Deployed application examples highlight that NOVA is easy to adopt, and data scientists appreciate in-notebook VA. NOVA is available at https://github.com/poloclub/nova.
翻译:我们如何发展易于采用的视觉分析工具?视觉化研究人员开发了大量网络VA工具,帮助数据科学家完成范围广泛的任务。然而,采用这些独立的系统可能具有挑战性,因为它们要求数据科学家创造新的工作流程来精简VA进程。最近的调查表明,计算笔记本在数据科学家的分析工作流程中占据主导地位,因为这些笔记本无缝地将文本、代码和可视化结合起来,使用户能够迅速透析代码实验。为了帮助视觉化研究人员开发能够很容易地融入现有数据科学工作流程的VA工具,我们介绍了NOVA,这是将基于网络的VA系统用于修改笔记本的简单而灵活的方法。我们提供了使用不同网络开发技术和不同类型计算笔记本使用这种方法的详细例子。部署应用实例强调NOVA很容易被采用,数据科学家在注解VA中欣赏。 NOVA可在https://github.com/poloclub/nova上查阅。