This paper presents a system which can recognise hand poses & gestures from the Indian Sign Language (ISL) in real-time using grid-based features. This system attempts to bridge the communication gap between the hearing and speech impaired and the rest of the society. The existing solutions either provide relatively low accuracy or do not work in real-time. This system provides good results on both the parameters. It can identify 33 hand poses and some gestures from the ISL. Sign Language is captured from a smartphone camera and its frames are transmitted to a remote server for processing. The use of any external hardware (such as gloves or the Microsoft Kinect sensor) is avoided, making it user-friendly. Techniques such as Face detection, Object stabilisation and Skin Colour Segmentation are used for hand detection and tracking. The image is further subjected to a Grid-based Feature Extraction technique which represents the hand's pose in the form of a Feature Vector. Hand poses are then classified using the k-Nearest Neighbours algorithm. On the other hand, for gesture classification, the motion and intermediate hand poses observation sequences are fed to Hidden Markov Model chains corresponding to the 12 pre-selected gestures defined in ISL. Using this methodology, the system is able to achieve an accuracy of 99.7% for static hand poses, and an accuracy of 97.23% for gesture recognition.
翻译:本文展示了一个系统, 能够识别印度手语( ISL) 的手姿势和手势。 这个系统试图用网格功能实时识别印度手语( ISL) 的手姿势和手势。 这个系统试图缩小听力和言语受损者与社会其他人之间的沟通差距。 现有的解决方案或者提供相对较低的精度, 或者不实时运行。 这个系统在两个参数上都提供了良好的效果。 它可以识别33个手姿势和ISL的一些手势。 手势来自智能手机相机, 其框架被传送到远程服务器进行处理。 避免使用任何外部硬件( 如手套或微软Kinect传感器), 使它方便用户使用。 在手势分类方面, 将面部检测、 物体稳定化和皮肤颜色分解等技术用于手部检测和跟踪。 这个图像还受到基于网格的地貌抽解技术的约束, 它代表手势的姿势, 然后用 k- Nearst 邻居的算法进行分类。 在手势分类方面, 动作和中间手势观察顺序顺序测量顺序, 向99 模型的精确度定位系统, 定的精确度为12 。