Machine learning (ML) is increasingly applied to Electronic Health Records (EHRs) to solve clinical prediction tasks. Although many ML models perform promisingly, issues with model transparency and interpretability limit their adoption in clinical practice. Directly using existing explainable ML techniques in clinical settings can be challenging. Through literature surveys and collaborations with six clinicians with an average of 17 years of clinical experience, we identified three key challenges, including clinicians' unfamiliarity with ML features, lack of contextual information, and the need for cohort-level evidence. Following an iterative design process, we further designed and developed VBridge, a visual analytics tool that seamlessly incorporates ML explanations into clinicians' decision-making workflow. The system includes a novel hierarchical display of contribution-based feature explanations and enriched interactions that connect the dots between ML features, explanations, and data. We demonstrated the effectiveness of VBridge through two case studies and expert interviews with four clinicians, showing that visually associating model explanations with patients' situational records can help clinicians better interpret and use model predictions when making clinician decisions. We further derived a list of design implications for developing future explainable ML tools to support clinical decision-making.
翻译:越来越多的机器学习(ML)被用于电子健康记录(EHRs),以解决临床预测任务。虽然许多ML模型表现良好,但具有模型透明度和可解释性的问题限制了临床实践的采用。在临床环境中直接使用现有的可解释的ML技术可能具有挑战性。通过文献调查以及与平均有17年临床经验的6名临床临床医生合作,我们确定了三大挑战,包括临床医生对ML特征的不熟悉性、缺乏背景信息以及群体一级证据的需要。在迭代设计过程之后,我们进一步设计和开发了VBridge,这是一个视觉分析工具,将ML解释无缝地纳入临床医生的决策工作流程。这个系统包括以贡献为基础的特征解释和丰富互动的新型等级展示,将ML特征、解释和数据之间的点联系起来。我们通过两个案例研究和与4名临床医生的专家访谈展示了VBridge的有效性,显示将模型解释与病人情况记录相近的模型解释有助于临床医生在作出临床决策时更好地解释和使用模型预测。我们进一步推导出一个设计影响清单,用于未来可解释ML工具。