As a result of the greater availability of big data, as well as the decreasing costs and increasing power of modern computing, the use of artificial neural networks for financial time series forecasting is once again a major topic of discussion and research in the financial world. Despite this academic focus, there are still contrasting opinions and bodies of literature on which artificial neural networks perform the best and whether or not they outperform the forecasting capabilities of conventional time series models. This paper uses a long-short term memory network to perform financial time series forecasting on the return data of the JSE Top 40 index. Furthermore, the forecasting performance of the long-short term memory network is compared to the forecasting performance of a seasonal autoregressive integrated moving average model. This paper evaluates the varying approaches presented in the existing literature and ultimately, compares the results to that existing literature. The paper concludes that the long short-term memory network outperforms the seasonal autoregressive integrated moving average model when forecasting intraday directional movements as well as when forecasting the index close price.


翻译:由于大数据的可获性增加,以及费用不断降低和现代计算能力不断提高,利用人工神经网络进行金融时序预测再次成为金融界讨论和研究的一个主要主题。尽管有这一学术重点,但对于人工神经网络发挥最佳效果以及是否优于常规时间序列模型的预测能力的各种不同观点和文献体系仍然存在差异。本文使用长期短期记忆网络对JSE 顶部40指数的回报数据进行财务时间序列预测。此外,长期短期记忆网络的预测业绩与季节性自动递减综合移动平均模型的预测业绩相比较。本文评估了现有文献中介绍的不同方法,最终将结果与现有文献进行比较。论文的结论是,长期短期记忆网络在预测日内方向变化和预测指数接近价格时,超越了季节性自动递增综合移动平均模型。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
78+阅读 · 2020年2月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】深度学习时序处理文献列表
机器学习研究会
7+阅读 · 2017年11月29日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
35+阅读 · 2021年1月27日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
VIP会员
相关VIP内容
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
78+阅读 · 2020年2月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
相关资讯
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】深度学习时序处理文献列表
机器学习研究会
7+阅读 · 2017年11月29日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员