A major challenge in cooperative sensing is to weight the measurements taken from the various sources to get an accurate result. Ideally, the weights should be inversely proportional to the error in the sensing information. However, previous cooperative sensor fusion approaches for autonomous vehicles use a fixed error model, in which the covariance of a sensor and its recognizer pipeline is just the mean of the measured covariance for all sensing scenarios. The approach proposed in this paper estimates error using key predictor terms that have high correlation with sensing and localization accuracy for accurate covariance estimation of each sensor observation. We adopt a tiered fusion model consisting of local and global sensor fusion steps. At the local fusion level, we add in a covariance generation stage using the error model for each sensor and the measured distance to generate the expected covariance matrix for each observation. At the global sensor fusion stage we add an additional stage to generate the localization covariance matrix from the key predictor term velocity and combines that with the covariance generated from the local fusion for accurate cooperative sensing. To showcase our method, we built a set of 1/10 scale model autonomous vehicles with scale accurate sensing capabilities and classified the error characteristics against a motion capture system. Results show an average and max improvement in RMSE when detecting vehicle positions of 1.42x and 1.78x respectively in a four-vehicle cooperative fusion scenario when using our error model versus a typical fixed error model.
翻译:合作遥感方面的一项重大挑战是权衡从各种来源测量得出的测量数据,以得出准确的结果。理想的情况是,加权比重应该与遥感信息的错误成反比。然而,以前对自主车辆的合作传感器聚变方法使用固定错误模型,其中传感器及其识别管道的共变只是所有遥感假设情景所测量的共变平均值的平均值。本文提议的方法是使用关键预测词来估计错误,这些关键预测词与遥感和本地化精度高度相关,以便准确估计每种传感器观测的准确差价。我们采用了由当地和全球传感器聚变步骤组成的分级聚变模型。在当地聚变级别一级,我们利用每个传感器的错误模型和测量的距离,在共变相生成一个固定错误模型,每个传感器和每个观测的测距都使用一个预期的共变差矩阵。在全球感应阶段,我们增加一个额外的阶段,从关键预测词术语速度产生本地集成的本地组合测测测测测测测得出准确合作测测结果的本地差率模型结合。为了展示我们的方法,我们建立了一套由1/10级传感器聚变异步骤组成的系统,78x级模型和机动型车辆级变差模型,在比例上,在比例测测测测测测测测测测测算的机动车辆的模型上,分别进行1/10级模型测测测测测测测测测测测测测测测测差的轨道上,在4级的频率,测测测测差率测算平均差率测差率上,分别为1级模型。