Despite the high accuracy offered by state-of-the-art deep natural-language models (e.g. LSTM, BERT), their application in real-life settings is still widely limited, as they behave like a black-box to the end-user. Hence, explainability is rapidly becoming a fundamental requirement of future-generation data-driven systems based on deep-learning approaches. Several attempts to fulfill the existing gap between accuracy and interpretability have been done. However, robust and specialized xAI (Explainable Artificial Intelligence) solutions tailored to deep natural-language models are still missing. We propose a new framework, named T-EBAnO, which provides innovative prediction-local and class-based model-global explanation strategies tailored to black-box deep natural-language models. Given a deep NLP model and the textual input data, T-EBAnO provides an objective, human-readable, domain-specific assessment of the reasons behind the automatic decision-making process. Specifically, the framework extracts sets of interpretable features mining the inner knowledge of the model. Then, it quantifies the influence of each feature during the prediction process by exploiting the novel normalized Perturbation Influence Relation index at the local level and the novel Global Absolute Influence and Global Relative Influence indexes at the global level. The effectiveness and the quality of the local and global explanations obtained with T-EBAnO are proved on (i) a sentiment analysis task performed by a fine-tuned BERT model, and (ii) a toxic comment classification task performed by an LSTM model.
翻译:尽管最先进的深层自然语言模型(如LSTM、BERT)提供了高度准确性,但其在现实环境中的应用仍然普遍有限,因为它们表现得像对终端用户的黑盒一样,因此,解释性正在迅速成为基于深层学习方法的未来生成数据驱动系统的基本要求。一些旨在弥补现有准确性和可解释性差距的尝试已经完成。然而,仍然缺少针对深层自然语言模型的强有力和专业化的xAI(可解释性人工智能)解决方案。我们提议了一个称为T-EBAnO的新框架,为黑盒深层自然语言模型提供创新的当地和基于阶级的预测分类模型全球解释战略。鉴于深层的NLP模型和文本输入数据,T-EBON对自动决策模型背后的原因进行了客观、可读、针对具体域的评估。具体地,通过挖掘模型的内部知识。然后,我们通过在预测过程中对每个特性的影响进行量化的预测-当地和基于阶级的模型的模型质量分析,利用了全球水平的精确性平级和升级的ILI-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-L-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-