Reinforcement Learning (RL) has been shown to improve the capabilities of large language models (LLMs). However, applying RL to open-domain tasks faces two key challenges: (1) the inherent subjectivity of these tasks prevents the verifiable rewards as required by Reinforcement Learning with Verifiable Rewards (RLVR); (2) Reinforcement Learning from Human Feedback (RLHF) relies on external reward mechanisms. To overcome these limitations, we propose Self-Examining Reinforcement Learning (SERL), a novel self-improving framework where the LLM serves as both Actor and Judge. SERL introduces two synergistic reward mechanisms without any external signals. On the one hand, to improve the Actor's capability, we derive rewards from Copeland-style pairwise comparison judgments across a group of generated responses. On the other hand, a self-consistency reward that encourages coherent judgments is proposed to improve the Judge's reliability. This process refines the Judge's capability, which in turn provides a more robust reward for Actor. Experiments show that our method outperforms existing self-improvement training methods. SERL improves the LC win rate of Qwen3-8B on AlpacaEval 2 from 52.37% to 59.90%. To the best of our knowledge, our method achieves state-of-the-art performance among self-improving approaches. Furthermore, it achieves a performance comparable to significantly larger models like Qwen3-32B, demonstrating superior effectiveness and robustness on open-domain tasks.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2023年9月2日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员