Aspect-Category Sentiment Analysis (ACSA) provides granular insights by identifying specific themes within reviews and their associated sentiment. While supervised learning approaches dominate this field, the scarcity and high cost of annotated data for new domains present significant barriers. We argue that leveraging large language models (LLMs) in a zero-shot setting is a practical alternative where resources for data annotation are limited. In this work, we propose a novel Chain-of-Thought (CoT) prompting technique that utilises an intermediate Unified Meaning Representation (UMR) to structure the reasoning process for the ACSA task. We evaluate this UMR-based approach against a standard CoT baseline across three models (Qwen3-4B, Qwen3-8B, and Gemini-2.5-Pro) and four diverse datasets. Our findings suggest that UMR effectiveness may be model-dependent. Whilst preliminary results indicate comparable performance for mid-sized models such as Qwen3-8B, these observations warrant further investigation, particularly regarding the potential applicability to smaller model architectures. Further research is required to establish the generalisability of these findings across different model scales.
翻译:方面类别情感分析(ACSA)通过识别评论中的特定主题及其相关情感,提供细粒度的洞察。尽管监督学习方法在该领域占据主导地位,但新领域标注数据的稀缺性和高成本构成了显著障碍。我们认为,在数据标注资源有限的情况下,利用大型语言模型(LLMs)进行零样本学习是一种实用的替代方案。在本研究中,我们提出了一种新颖的思维链(CoT)提示技术,该技术利用中间的统一意义表示(UMR)来构建ACSA任务的推理过程。我们在三个模型(Qwen3-4B、Qwen3-8B和Gemini-2.5-Pro)和四个不同数据集上,将这种基于UMR的方法与标准CoT基线进行了评估。我们的研究结果表明,UMR的有效性可能依赖于具体模型。虽然初步结果显示,对于Qwen3-8B等中等规模模型,其性能与基线相当,但这些观察结果需要进一步研究,特别是关于该方法在更小模型架构上的潜在适用性。需要进一步的研究来确定这些发现在不同模型规模上的普适性。