There exist situations of decision-making under information overload in the Internet, where people have an overwhelming number of available options to choose from, e.g. products to buy in an e-commerce site, or restaurants to visit in a large city. Recommender systems arose as a data-driven personalized decision support tool to assist users in these situations: they are able to process user-related data, filtering and recommending items based on the users preferences, needs and/or behaviour. Unlike most conventional recommender approaches where items are inanimate entities recommended to the users and success is solely determined upon the end users reaction to the recommendation(s) received, in a Reciprocal Recommender System (RRS) users become the item being recommended to other users. Hence, both the end user and the user being recommended should accept the 'matching' recommendation to yield a successful RRS performance. The operation of an RRS entails not only predicting accurate preference estimates upon user interaction data as classical recommenders do, but also calculating mutual compatibility between (pairs of) users, typically by applying fusion processes on unilateral user-to-user preference information. This paper presents a snapshot-style analysis of the extant literature that summarizes the state-of-the-art RRS research to date, focusing on the algorithms, fusion processes and fundamental characteristics of RRS, both inherited from conventional user-to-item recommendation models and those inherent to this emerging family of approaches. Representative RRS models are likewise highlighted. Following this, we discuss the challenges and opportunities for future research on RRSs, with special focus on (i) fusion strategies to account for reciprocity and (ii) emerging application domains related to social recommendation.
翻译:在互联网信息超载的情况下,存在着决策情况,人们在互联网信息超载的情况下,可以选择的选项数量极多,例如,在电子商务网站或餐馆购买产品,在大型城市进行访问。建议系统是数据驱动的个人化决策支持工具,目的是帮助用户在这些情况下:他们能够处理与用户有关的数据,过滤和推荐基于用户偏好、需要和/或行为的项目。与大多数常规建议方法不同,项目是向用户推荐的无动于衷实体,成功完全取决于最终用户对收到的建议的反应,在相互对等建议系统中,用户成为被推荐到其他用户的项目。因此,建议中的最终用户和用户都应接受“匹配”的常规决策支持工具,以便产生成功的RRS业绩。 RRS的运作不仅需要根据用户的内在互动数据预测准确的偏好估计数,而且还要计算用户之间的相互兼容性(比例),通常通过将用户对用户偏好单方面信息的统一程序来确定,在相互对用户偏好选择系统中的用户用户选择系统(RRS)用户用户中,用户成为被推荐的对象成为被推荐的对象。因此,最终用户用户和被推荐的用户选择的用户应用域域域域域的系统应用的系统应用方法,本文的缩略图分析,而我们的系统模型的系统模型的系统模型分析,这些模型的缩略图分析,这些模型的系统模型的缩缩缩缩缩图的模型的模型的模型的模型的系统模型的模型和模型的模型的模型的模型的模型的缩缩缩缩缩缩缩缩缩缩缩缩略图。