We demonstrate an object tracking method for {3D} images with fixed computational cost and state-of-the-art performance. Previous methods predicted transformation parameters from convolutional layers. We instead propose an architecture that does not include either flattening of convolutional features or fully connected layers, but instead relies on equivariant filters to preserve transformations between inputs and outputs (e.g. rot./trans. of inputs rotate/translate outputs). The transformation is then derived in closed form from the outputs of the filters. This method is useful for applications requiring low latency, such as real-time tracking. We demonstrate our model on synthetically augmented adult brain MRI, as well as fetal brain MRI, which is the intended use-case.
翻译:我们展示了固定计算成本和最新性能的 {3D} 图像的天体跟踪方法。 先前的方法预测了进化层的变异参数。 相反,我们提议了一个结构,它既不包括平滑进化特性,也不包括完全连接的层,而是依靠等式过滤器来保持输入和输出之间的转换( 例如输入旋转/转换输出的腐烂./转换)。 然后,转换以封闭的形式从过滤器的输出中衍生出来。 这个方法对于需要低潜值的应用程序很有用, 比如实时跟踪。 我们展示了我们关于合成增强成人脑MRI的模型, 以及作为预期使用的方形脑 MRI 。