Relative localization is critical for cooperation in autonomous multi-robot systems. Existing approaches either rely on shared environmental features or inertial assumptions or suffer from non-line-of-sight degradation and outliers in complex environments. Robust and efficient fusion of inter-robot measurements such as bearings, distances, and inertials for tens of robots remains challenging. We present CREPES-X (Cooperative RElative Pose Estimation System with multiple eXtended features), a hierarchical relative localization framework that enhances speed, accuracy, and robustness under challenging conditions, without requiring any global information. CREPES-X starts with a compact hardware design: InfraRed (IR) LEDs, an IR camera, an ultra-wideband module, and an IMU housed in a cube no larger than 6cm on each side. Then CREPES-X implements a two-stage hierarchical estimator to meet different requirements, considering speed, accuracy, and robustness. First, we propose a single-frame relative estimator that provides instant relative poses for multi-robot setups through a closed-form solution and robust bearing outlier rejection. Then a multi-frame relative estimator is designed to offer accurate and robust relative states by exploring IMU pre-integration via robocentric relative kinematics with loosely- and tightly-coupled optimization. Extensive simulations and real-world experiments validate the effectiveness of CREPES-X, showing robustness to up to 90% bearing outliers, proving resilience in challenging conditions, and achieving RMSE of 0.073m and 1.817° in real-world datasets.
翻译:相对定位是自主多机器人系统协同工作的关键。现有方法要么依赖于共享环境特征或惯性假设,要么在复杂环境中受限于非视距性能下降和异常值干扰。对于数十个机器人之间的方位、距离和惯性等测量信息进行鲁棒且高效的融合仍具挑战性。本文提出CREPES-X(具备多重扩展特征的协同相对位姿估计系统),一种层次化相对定位框架,在无需任何全局信息的条件下,显著提升了恶劣环境下的速度、精度与鲁棒性。CREPES-X始于紧凑的硬件设计:将红外LED、红外相机、超宽带模块和IMU集成于边长不超过6厘米的立方体内。随后,CREPES-X实现了一个两阶段层次化估计器,以兼顾速度、精度与鲁棒性的不同需求。首先,我们提出一种单帧相对估计器,通过闭式解与鲁棒的方位异常值剔除机制,为多机器人系统提供即时相对位姿。进而设计了一种多帧相对估计器,通过基于机器人中心相对运动学的IMU预积分,结合松耦合与紧耦合优化,提供精确且鲁棒的相对状态。大量仿真与真实环境实验验证了CREPES-X的有效性:其对高达90%的方位异常值具有鲁棒性,在挑战性条件下表现出强韧性,并在真实数据集中实现了0.073米与1.817°的均方根误差。