This paper is in concern with Cauchy problems involving the fractional derivatives with respect to another function. Results of existence, uniqueness, and Taylor series among others are established in appropriate functional spaces. We prove that these results are valid at once for several standard fractional operators such as the Riemann-Liouville and Caputo operators, the Hadamard operators, the Erd\'elyi-Kober operators, etc., depending on the choice of the scaling function. We also show that our technique can be useful to solve a wide range of Volterra integral equations. The numerical approximation of solutions of systems involving the fractional derivatives with respect to another function is also investigated and the optimal convergence rate of the schemes is reached in graded meshes, even in the case of singular solutions. Various examples and numerical tests, with an application to the Erd\'elyi-Kober operators, are performed at the end to illustrate the efficiency of the proposed approach.
翻译:本文涉及与其它函数有关的分衍生物的Cauchy问题。 存在、 独特性和 Taylor 系列等的结果在适当的功能空间中确定。 我们证明这些结果对一些标准的分解操作者, 如Riemann- Liouville和Caputo操作员、 Hadamard 操作员、 Erd\'elyi- Kober 操作员等立即有效, 取决于缩放功能的选择。 我们还表明, 我们的技术对于解决范围广泛的Volterra 整体方程式是有用的。 涉及分解衍生物的系统相对于其他功能的解决方案在数字上接近于其他功能, 并在分级的meshes 中达到计划的最佳趋同率, 即使在单一的解决方案中也是如此。 在结尾处进行了各种实例和数字测试, 对 Erd\' elyi- Kober 操作员进行了应用, 以说明拟议方法的效率。