Smart home environments are designed to provide services that help improve the quality of life for the occupant via a variety of sensors and actuators installed throughout the space. Many automated actions taken by a smart home are governed by the output of an underlying activity recognition system. However, activity recognition systems may not be perfectly accurate and therefore inconsistencies in smart home operations can lead a user to wonder "why did the smart home do that?" In this work, we build on insights from Explainable Artificial Intelligence (XAI) techniques to contribute computational methods for explainable activity recognition. Specifically, we generate explanations for smart home activity recognition systems that explain what about an activity led to the given classification. To do so, we introduce four computational techniques for generating natural language explanations of smart home data and compare their effectiveness at generating meaningful explanations. Through a study with everyday users, we evaluate user preferences towards the four explanation types. Our results show that the leading approach, SHAP, has a 92% success rate in generating accurate explanations. Moreover, 84% of sampled scenarios users preferred natural language explanations over a simple activity label, underscoring the need for explainable activity recognition systems. Finally, we show that explanations generated by some XAI methods can lead users to lose confidence in the accuracy of the underlying activity recognition model, while others lead users to gain confidence. Taking all studied factors into consideration, we make a recommendation regarding which existing XAI method leads to the best performance in the domain of smart home automation, and discuss a range of topics for future work in this area.


翻译:智能家庭环境的设计旨在通过在空间各地安装的各种传感器和动画器,提供有助于改善居住者的生活质量的服务。智能家庭采取的许多自动化行动受基本活动识别系统产出的制约。然而,活动识别系统可能不完全准确,因此智能家庭操作的不一致性使用户怀疑“智能家庭为何这样做?”在这项工作中,我们利用可解释人工智能智能智能(XAI)技术的洞察力,为可解释活动识别提供计算方法。具体地说,我们为智能家庭活动识别系统提供解释,解释某项活动导致给定的分类。为此,我们引入四种计算技术,以生成智能家庭数据的自然语言解释,并比较其产生有意义解释的效果。通过对日常用户的研究,我们评估用户对四种解释类型选择的偏好。我们的结果显示,主要方法SHAP在准确解释方面成功率为92%。此外,84%的抽样假设用户更喜欢自然语言解释,而不是简单的活动标签,强调需要可解释的活动识别系统。为了做到这一点,我们引入四种计算方法,我们通过研究AVI的准确性研究方法来判断未来用户的正确度。我们学习了某种内部选择了某种选择的方法。我们研究方法,在研究其他方法,在研究中选择了一种最精确的方法。

0
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
Learning Recommender Systems from Multi-Behavior Data
Arxiv
7+阅读 · 2018年11月29日
Arxiv
8+阅读 · 2018年2月23日
VIP会员
相关VIP内容
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Top
微信扫码咨询专知VIP会员