Significant treatment effects are often emphasized when interpreting and summarizing empirical findings in studies that estimate multiple, possibly many, treatment effects. Under this kind of selective reporting, conventional treatment effect estimates may be biased and their corresponding confidence intervals may undercover the true effect sizes. We propose new estimators and confidence intervals that provide valid inferences on the effect sizes of the significant effects after multiple hypothesis testing. Our methods are based on the principle of selective conditional inference and complement a wide range of tests, including step-up tests and bootstrap-based step-down tests. Our approach is scalable, allowing us to study an application with over 370 estimated effects. We justify our procedure for asymptotically normal treatment effect estimators. We provide two empirical examples that demonstrate bias correction and confidence interval adjustments for significant effects. The magnitude and direction of the bias correction depend on the correlation structure of the estimated effects and whether the interpretation of the significant effects depends on the (in)significance of other effects.
翻译:在估计多个(可能众多)处理效应的研究中,解释和总结实证发现时,显著的处理效应常被强调。在此类选择性报告下,传统的处理效应估计可能存在偏差,其相应的置信区间可能无法覆盖真实的效应量。我们提出了新的估计量和置信区间,用于在多重假设检验后对显著效应的效应量进行有效推断。我们的方法基于选择性条件推断原理,可补充多种检验方法,包括逐步向上检验和基于自助法的逐步向下检验。我们的方法具有可扩展性,使我们能够研究包含超过370个估计效应的应用。我们为渐近正态的处理效应估计量证明了我们程序的合理性。我们提供了两个实证示例,展示了针对显著效应的偏差校正和置信区间调整。偏差校正的幅度和方向取决于估计效应的相关结构,以及显著效应的解释是否依赖于其他效应的(不)显著性。