Despite recent progress of automatic medical image segmentation techniques, fully automatic results usually fail to meet the clinical use and typically require further refinement. In this work, we propose a quality-aware memory network for interactive segmentation of 3D medical images. Provided by user guidance on an arbitrary slice, an interaction network is firstly employed to obtain an initial 2D segmentation. The quality-aware memory network subsequently propagates the initial segmentation estimation bidirectionally over the entire volume. Subsequent refinement based on additional user guidance on other slices can be incorporated in the same manner. To further facilitate interactive segmentation, a quality assessment module is introduced to suggest the next slice to segment based on the current segmentation quality of each slice. The proposed network has two appealing characteristics: 1) The memory-augmented network offers the ability to quickly encode past segmentation information, which will be retrieved for the segmentation of other slices; 2) The quality assessment module enables the model to directly estimate the qualities of segmentation predictions, which allows an active learning paradigm where users preferentially label the lowest-quality slice for multi-round refinement. The proposed network leads to a robust interactive segmentation engine, which can generalize well to various types of user annotations (e.g., scribbles, boxes). Experimental results on various medical datasets demonstrate the superiority of our approach in comparison with existing techniques.


翻译:尽管最近医学图像自动分解技术取得了进展,但完全自动结果通常不能满足临床用途,通常需要进一步完善。在这项工作中,我们提议为3D医疗图像的互动分解建立一个质量认知记忆网络。根据用户对任意切片的指导,首先使用互动网络获得初始 2D 分解。质量认知网络随后双向传播初始分解估计,随后根据用户对其他切片的额外指导进行改进,可以以同样的方式纳入。为了进一步便利交互分解,引入了一个质量评估模块,以根据每个切片目前的分解质量提出下一个切片到分解的切片。拟议网络有两个吸引人的特性:(1) 记忆推荐网络提供快速编码过去分解信息的能力,用于其他切片的分解;(2) 质量评估模块使模型能够直接估计分解预测的质量,这样可以让用户优先标出每切片中质量最低的分解点。拟议网络可导致一个坚实的交互分解分解方法,在各种分解方法上将现有各组分解结果与现有数据模型进行总体化。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
专知会员服务
29+阅读 · 2021年8月2日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
多标签学习的新趋势(2020 Survey)
专知会员服务
42+阅读 · 2020年12月6日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
已删除
将门创投
5+阅读 · 2020年3月2日
Arxiv
6+阅读 · 2018年6月21日
VIP会员
相关资讯
已删除
将门创投
5+阅读 · 2020年3月2日
Top
微信扫码咨询专知VIP会员