This paper presents a context-aware tracing strategy (CATS) for crisp edge detection with deep edge detectors, based on an observation that the localization ambiguity of deep edge detectors is mainly caused by the mixing phenomenon of convolutional neural networks: feature mixing in edge classification and side mixing during fusing side predictions. The CATS consists of two modules: a novel tracing loss that performs feature unmixing by tracing boundaries for better side edge learning, and a context-aware fusion block that tackles the side mixing by aggregating the complementary merits of learned side edges. Experiments demonstrate that the proposed CATS can be integrated into modern deep edge detectors to improve localization accuracy. With the vanilla VGG16 backbone, in terms of BSDS500 dataset, our CATS improves the F-measure (ODS) of the RCF and BDCN deep edge detectors by 12% and 6% respectively when evaluating without using the morphological non-maximal suppression scheme for edge detection.
翻译:本文介绍了以深边缘探测器进行直线边缘探测的背景认知跟踪战略(CATS),其依据的观察是,深边缘探测器的定位模糊性主要是由进化神经网络的混合现象造成的:在边缘分类和侧边混合的特征在阻燃侧预测中混合。 CATS由两个模块组成:一种新颖的跟踪损失,通过跟踪边界进行分解,以更好地边边缘学习,以及一种环境认知聚合块,通过汇集所学边缘的优点,解决侧缘的混合。 实验表明,拟议的CATS可以纳入现代的深边缘探测器,以提高本地化的准确性。在香草 VGG16 脊柱上,用 BSDS500数据集,我们的CATS在不使用地形非动物抑制计划进行边缘检测的情况下进行评估时,将区域合作框架和BDCN深海边缘探测器的F-测量法(ODS)分别提高了12%和6%。