In case law, the precedents are the relevant cases that are used to support the decisions made by the judges and the opinions of lawyers towards a given case. This relevance is referred to as the case-to-case reference relation. To efficiently find relevant cases from a large case pool, retrieval tools are widely used by legal practitioners. Existing legal case retrieval models mainly work by comparing the text representations of individual cases. Although they obtain a decent retrieval accuracy, the intrinsic case connectivity relationships among cases have not been well exploited for case encoding, therefore limiting the further improvement of retrieval performance. In a case pool, there are three types of case connectivity relationships: the case reference relationship, the case semantic relationship, and the case legal charge relationship. Due to the inductive manner in the task of legal case retrieval, using case reference as input is not applicable for testing. Thus, in this paper, a CaseLink model based on inductive graph learning is proposed to utilise the intrinsic case connectivity for legal case retrieval, a novel Global Case Graph is incorporated to represent both the case semantic relationship and the case legal charge relationship. A novel contrastive objective with a regularisation on the degree of case nodes is proposed to leverage the information carried by the case reference relationship to optimise the model. Extensive experiments have been conducted on two benchmark datasets, which demonstrate the state-of-the-art performance of CaseLink. The code has been released on https://github.com/yanran-tang/CaseLink.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员