Parental origin effects play an important role in mammal development and disorder. Case-control mother-child pair genotype data can be used to detect parental origin effects and is often convenient to collect in practice. Most existing methods for assessing parental origin effects do not incorporate any covariates, which may be required to control for confounding factors. We propose to model the parental origin effects through a logistic regression model, with predictors including maternal and child genotypes, parental origins, and covariates. The parental origins may not be fully inferred from genotypes of a target genetic marker, so we propose to use genotypes of markers tightly linked to the target marker to increase inference efficiency. A computationally robust statistical inference procedure is developed based on a modified profile likelihood in a retrospective way. A computationally feasible expectation-maximization algorithm is devised to estimate all unknown parameters involved in the modified profile likelihood. This algorithm differs from the conventional expectation-maximization algorithm in the sense that it is based on a modified instead of the original profile likelihood function. The convergence of the algorithm is established under some mild regularity conditions. This expectation-maximization algorithm also allows convenient handling of missing child genotypes. Large sample properties, including weak consistency, asymptotic normality, and asymptotic efficiency, are established for the proposed estimator under some mild regularity conditions. Finite sample properties are evaluated through extensive simulation studies and the application to a real dataset.


翻译:父母起源效应在哺乳动物发育和病变中起着重要作用。 病例控制母子对基因型数据可用于检测父母起源效应,而且往往便于在实践中收集。 大多数评估父母起源效应的现有方法并不包含任何共变办法,而可能需要用这种办法来控制混杂因素。 我们提议通过一个逻辑回归模型来模拟父母起源效应,使用包括妇幼基因型、父母起源和同化在内的预测值。 父母起源可能不完全从目标基因标记的基因类型中推断出来,因此我们提议使用与目标标记紧密相连的标记基因型,以提高推断效率。 一种计算上稳健的统计推论程序,其依据是经过修改的剖析可能性。 一种计算可行的预期-最大化算法,用以估计所有与修改后的剖析可能性有关的未知参数。 这种算法与传统的预期-最大化算法不同,因为其依据是修改而非原始剖析概率函数。 算法的趋同性类型在某种温和定的定性条件下建立趋同性,包括精确性研究的精确性,这种预期- 使儿童特性的定性分析法性在一种不精确性研究中进行。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
159+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月5日
Arxiv
0+阅读 · 2022年10月1日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员