Sensitivity Analysis is a framework to assess how conclusions drawn from missing outcome data may be vulnerable to departures from untestable underlying assumptions. We extend the E-value, a popular metric for quantifying robustness of causal conclusions, to the setting of missing outcomes. With motivating examples from partially-observed Facebook conversion events, we present methodology for conducting Sensitivity Analysis at scale with three contributions. First, we develop a method for the Bayesian estimation of sensitivity parameters leveraging noisy benchmarks(e.g., aggregated reports for protecting unit-level privacy); both empirically derived subjective and objective priors are explored. Second, utilizing the Bayesian estimation of the sensitivity parameters we propose a mechanism for posterior inference of the E-value via simulation. Finally, closed form distributions of the E-value are constructed to make direct inference possible when posterior simulation is infeasible due to computational constraints. We demonstrate gains in performance over asymptotic inference of the E-value using data-based simulations, supplemented by a case-study of Facebook conversion events.
翻译:感知力分析是一个框架,用以评估从缺失的结果数据中得出的结论如何容易偏离无法检验的基本假设。我们将E值这一量化因果结论稳健性的流行指标扩大到设定缺失的结果。我们利用部分观察的Facebook转换事件的实例,提出了采用三种贡献进行规模敏感性分析的方法。首先,我们开发了一种方法,用于巴伊西亚对利用噪音基准的敏感性参数进行估算(例如,保护单位级隐私的汇总报告);探索了从经验中得出的主观和客观前科。第二,利用巴伊西亚人对敏感参数的估计,我们提出了一个通过模拟对电子价值事后推断的机制。最后,在事后模拟因计算限制不可行时,电子价值的封闭形式分布可以直接推断。我们用基于数据的模拟和对脸书转换事件进行案例研究加以补充,展示了对电子价值的不相称性推断。