In recent years, the proliferation of misinformation and fake news has posed serious threats to individuals and society, spurring intense research into automated detection methods. Previous work showed that integrating content, user preferences, and propagation structure achieves strong performance, but leaves all graph-level representation learning entirely to the GNN, hiding any explicit topological cues. To close this gap, we introduce a lightweight enhancement: for each node, we append two classical graph-theoretic metrics, degree centrality and local clustering coefficient, to its original BERT and profile embeddings, thus explicitly flagging the roles of hub and community. In the UPFD Politifact subset, this simple modification boosts macro F1 from 0.7753 to 0.8344 over the original baseline. Our study not only demonstrates the practical value of explicit topology features in fake-news detection but also provides an interpretable, easily reproducible template for fusing graph metrics in other information-diffusion tasks.


翻译:近年来,虚假信息和虚假新闻的泛滥对个人和社会构成了严重威胁,推动了自动化检测方法的深入研究。先前的研究表明,整合内容、用户偏好和传播结构能够实现较强的检测性能,但将图级表征学习完全交由图神经网络处理,掩盖了任何显式的拓扑线索。为弥补这一不足,我们提出了一种轻量级增强方法:针对每个节点,在其原始的BERT嵌入和用户画像嵌入基础上,附加两个经典的图论度量指标——度中心性和局部聚类系数,从而显式地标注节点作为枢纽和社区成员的角色。在UPFD Politifact子集上,这一简单改进将宏观F1分数从原始基线的0.7753提升至0.8344。本研究不仅证明了显式拓扑特征在虚假新闻检测中的实用价值,还为其他信息传播任务中融合图度量指标提供了一个可解释、易于复现的模板。

0
下载
关闭预览

相关内容

新闻,是指报纸、电台、电视台、互联网等媒体经常使用的记录与传播信息的 [2] 一种文体,是反映时代的一种文体。新闻概念有广义与狭义之分。广义上:除了发表于报刊、广播、互联网、电视上的评论与专文外的常用文本都属于新闻,包括消息、通讯、特写、速写(有的将速写纳入特写之列)等等; [3] 狭义上:消息是用概括的叙述方式,以较简明扼要的文字,迅速及时地报道附近新近发生的、有价值的事实,使一定人群了解。新闻一般包括标题、导语、主体、背景和结语五部分。前三者是主要部分,后二者是辅助部分。写法以叙述为主兼或有议论、描写、评论等。新闻是包含海量资讯的新闻服务平台,真实反映每时每刻的重要事件。您可以搜索新闻事件、热点话题、人物动态、产品资讯等,快速了解它们的最新进展。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
An Overview on Machine Translation Evaluation
Arxiv
14+阅读 · 2022年2月22日
Arxiv
14+阅读 · 2018年4月6日
Arxiv
12+阅读 · 2018年1月28日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员