In this paper we study the eigenvalues of the laplacian matrices of the cyclic graphs with one edge of weight $\alpha$ and the others of weight $1$. We denote by $n$ the order of the graph and suppose that $n$ tends to infinity. We notice that the characteristic polynomial and the eigenvalues depend only on $\operatorname{Re}(\alpha)$. After that, through the rest of the paper we suppose that $0<\alpha<1$. It is easy to see that the eigenvalues belong to $[0,4]$ and are asymptotically distributed as the function $g(x)=4\sin^2(x/2)$ on $[0,\pi]$. We obtain a series of results about the individual behavior of the eigenvalues. First, we describe more precisely their localization in subintervals of $[0,4]$. Second, we transform the characteristic equation to a form convenient to solve by numerical methods. In particular, we prove that Newton's method converges for every $n\ge3$. Third, we derive asymptotic formulas for all eigenvalues, where the errors are uniformly bounded with respect to the number of the eigenvalue.
翻译:在本文中,我们用一个重量边缘的环形图的弧形矩阵的仪表价值进行研究。 我们用美元表示, 我们用美元表示, 假设美元倾向于无穷。 我们注意到, 典型的多元值和环形值仅取决于$\operatorname{Re} (\alpha)$。 之后, 我们通过论文的其余部分, 我们假设 $0 alpha < $1 。 很容易看到, egen值属于$[ 40, 4] 美元, 并且以 $g(x)=4\ sin=2(x/2) 美元 的函数来表示。 我们发现, 典型的多元值和 egen值仅取决于$0,\pi] 的单个行为的一系列结果。 首先, 我们更准确地描述它们在 $[0, 4, 4, $。 其次, 我们用数字方法将特性方程式转换成一种容易解析的形式。 特别是, 我们证明, 牛顿 值 值 值 和 公式的每个正值均值 的公式都与 。