Research in functional regression has made great strides in expanding to non-Gaussian functional outcomes, but exploration of ordinal functional outcomes remains limited. Motivated by a study of computer-use behavior in rhesus macaques (Macaca mulatta), we introduce the Ordinal Probit Functional Outcome Regression model (OPFOR). OPFOR models can be fit using one of several basis functions including penalized B-splines, wavelets, and O'Sullivan splines -- the last of which typically performs best. Simulation using a variety of underlying covariance patterns shows that the model performs reasonably well in estimation under multiple basis functions with near nominal coverage for joint credible intervals. Finally, in application, we use Bayesian model selection criteria adapted to functional outcome regression to best characterize the relation between several demographic factors of interest and the monkeys' computer use over the course of a year. In comparison with a standard ordinal longitudinal analysis, OPFOR outperforms a cumulative-link mixed-effects model in simulation and provides additional and more nuanced information on the nature of the monkeys' computer-use behavior.


翻译:在功能回归的研究中,功能回归的研究在扩展至非圭亚那功能结果方面取得了长足进步,但是对正正函数结果的探索仍然有限。在对rhessus macaques(Macaca mulatta)的计算机使用行为的研究的推动下,我们引入了Ordinal propit 功能功能回归模型(OPFOR ) 。 OPFOR 模型可以使用几种基础功能之一, 包括惩罚的B- spline、波子和O'Sullivan 样条(后者中的最后一种通常效果最佳 ) 。 使用各种基本常态变量模式的模拟表明,该模型在多种基础功能下在估算方面表现得相当好,几乎名义覆盖了可信的间隔时间。 最后,在应用中,我们使用贝叶斯模式选择标准标准来适应功能结果回归,以最佳地描述若干引起兴趣的人口因素和猴子在一年内使用计算机之间的关系。 与标准或常态的纵向分析相比,OPFORF在模拟中超越了一种累积的混合效应模型,并且提供了更多关于猴子计算机使用行为性质的细微信息。

0
下载
关闭预览

相关内容

AlphaZero原理与启示
专知会员服务
32+阅读 · 2020年8月23日
专知会员服务
139+阅读 · 2020年5月19日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
3+阅读 · 2019年1月8日
VIP会员
相关VIP内容
AlphaZero原理与启示
专知会员服务
32+阅读 · 2020年8月23日
专知会员服务
139+阅读 · 2020年5月19日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
3+阅读 · 2019年1月8日
Top
微信扫码咨询专知VIP会员