Systems that rely on forecasts to make decisions, e.g. control or energy trading systems, require frequent updates of the forecasts. Usually, the forecasts are updated whenever new observations become available, hence in an online setting. We present the R package onlineforecast that provides a generalized setup of data and models for online forecasting. It has functionality for time-adaptive fitting of linear regression-based models. Furthermore, dynamical and non-linear effects can be easily included in the models. The setup is tailored to enable effective use of forecasts as model inputs, e.g. numerical weather forecast. Users can create new models for their particular system applications and run models in an operational online setting. The package also allows users to easily replace parts of the setup, e.g. use kernel or neural network methods for estimation. The package comes with comprehensive vignettes and examples of online forecasting applications in energy systems, but can easily be applied in all fields where online forecasting is used.
翻译:依靠预测作出决策的系统,例如控制或能源交易系统,需要经常更新预测。通常,一旦有了新的观测,就会更新预测,从而在网上设置中进行。我们在线提供R包的在线预览,为在线预报提供通用的数据和模型。它具有对线性回归模型进行时间适应的功能。此外,动态和非线性效应可以很容易地纳入模型。这种设置是专门设计的,以便能够有效利用预测作为模型投入,例如数字天气预报。用户可以为其特定的系统应用创建新的模型,并在操作的在线设置中运行模型。该包还使用户能够方便地替换设置的部件,例如使用内核或神经网络方法进行估算。该包配有全面的维尼特和能源系统中在线预测应用的实例,但可以很容易地应用于使用在线预报的所有领域。