Parikh automata extend finite automata by counters that can be tested for membership in a semilinear set, but only at the end of a run, thereby preserving many of the desirable algorithmic properties of finite automata. Here, we study the extension of the classical framework onto infinite inputs: We introduce reachability, safety, B\"uchi, and co-B\"uchi Parikh automata on infinite words and study expressiveness, closure properties, and the complexity of verification problems. We show that almost all classes of automata have pairwise incomparable expressiveness, both in the deterministic and the nondeterministic case; a result that sharply contrasts with the well-known hierarchy in the $\omega$-regular setting. Furthermore, emptiness is shown decidable for Parikh automata with reachability or B\"uchi acceptance, but undecidable for safety and co-B\"uchi acceptance. Most importantly, we show decidability of model checking with specifications given by deterministic Parikh automata with safety or co-B\"uchi acceptance, but also undecidability for all other types of automata. Finally, solving games is undecidable for all types.


翻译:Parikh Automata 以可测试成半线性集成的计数器扩展限制自动数据, 但只能在运行结束时进行测试, 从而保存有限自动数据的许多理想算法特性。 在这里, 我们研究经典框架的扩展到无限输入: 我们在无限的单词上引入可扩展性、 安全性、 B\\\'uchi 和 共同- B\\\\\\\\\\\\\\\ 自动数据, 研究表达性、 封闭性、 以及核查问题的复杂性 。 我们显示几乎所有类型的自动数据在确定性和非确定性的情况下都具有不相称的直观性; 其结果与 $\ omga$- 常规设置中众所周知的等级形成鲜明对比。 此外, 安全性或 B\\\\ “ 接受性” Parikh 自动数据显示为可衰减性, 但对于安全和 共B\\ 接受性, 我们展示了模式的可辨性, 但是由确定性自定义性自定义的自定义的自定义的自定义的自定义的自定义的自定义的自定义性, 和不可更改性游戏的所有可解的自动的游戏类型, 解性、 解性、 和可解性能解的自定义的自定义的游戏类型, 全部的自动解的自动解的游戏类型, 解解解解式游戏类型都是所有类型的自动的。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月15日
Arxiv
0+阅读 · 2023年2月14日
Arxiv
13+阅读 · 2021年3月3日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员