The set of local modes and the ridge lines estimated from a dataset are important summary characteristics of the data-generating distribution. In this work, we consider estimating the local modes and ridges from point cloud data in a product space with two or more Euclidean/directional metric spaces. Specifically, we generalize the well-known (subspace constrained) mean shift algorithm to the product space setting and illuminate some pitfalls in such generalization. We derive the algorithmic convergence of the proposed method, provide practical guidelines on the implementation, and demonstrate its effectiveness on both simulated and real datasets.
翻译:一组本地模式和根据数据集估计的脊柱线是数据生成分布的重要摘要特征。 在这项工作中,我们考虑从具有两个或两个以上欧洲/方向度空间的产品空间的点云数据中估算本地模式和脊脊。具体地说,我们将众所周知的(子空间受限)向产品空间设置的转换算法概括化,并照亮在这种概括化中的一些陷阱。我们从算法中得出拟议方法的集成,为实施工作提供实用指南,并展示其在模拟和真实数据集上的有效性。