Local community search is an important research topic to support complex network data analysis in various scenarios like social networks, collaboration networks, and cellular networks. The evolution of networks over time has motivated several recent studies to identify local communities from dynamic networks. However, they only utilized the aggregation of disjoint structural information to measure the quality of communities, which ignores the reliability of communities in a continuous time interval. To fill this research gap, we propose a novel $(\theta,k)$-$core$ reliable community (CRC) model in the weighted dynamic networks, and define the problem of the most reliable community search that couples the desirable properties of connection strength, cohesive structure continuity, and the maximal member engagement. To solve this problem, we first develop an online CRC search algorithm by proposing a definition of eligible edge set and deriving the eligible edge set based pruning rules. % called the Eligible Edge Filtering-based CRC algorithm. After that, we devise a Weighted Core Forest-Index and index-based dynamic programming CRC search algorithm, which can prune a large number of insignificant intermediate results according to the maintained weight and structure information in the index, as well as the proposed upper bound properties. % our proposed pruning properties and upper bound properties. Finally, we conduct extensive experiments to verify the efficiency of our proposed algorithms and the effectiveness of our proposed community model on eight real datasets under different parameter settings.
翻译:本地社区搜索是支持社会网络、协作网络和蜂窝网络等各种情景的复杂网络数据分析的重要研究课题。网络的演变促使最近进行了几项研究,从动态网络中查明当地社区。然而,它们只是利用不连接的结构信息汇总来测量社区质量,这在连续的时间间隔中忽略了社区的可靠性。为了填补这一研究差距,我们提议在加权动态网络中采用一个小说(theta,k)-$-核心$可靠的社区(CRC)模型,并界定最可靠的社区搜索问题,即将连接强度、凝聚力结构连续性和最大成员参与的可取性能结合起来。为了解决这个问题,我们首先开发一个在线的CRC搜索算法,方法是提出符合资格的边缘数据集定义,并得出基于连续时间间隔中社区可靠性的合格边缘数据集。% 称为基于CRC的“Equect Edge 过滤”算法。 之后,我们设计了一个加权核心森林- Index 和基于指数的动态社区搜索算法,根据指数中保持的重量和结构信息结构,以及最大成员参与度,我们首先开发一个在线搜索算算算算算算出大量中间结果,然后根据我们拟议的8项的拟议数据序列中的拟议属性的高级实验,作为我们拟议的高级分析结果,然后进行广泛的实验。我们提议的高级分析。最后的高级分析。