In order to capture the dependence in the upper tail of a time series, we develop non-negative regularly-varying time series models that are constructed similarly to classical non-extreme ARMA models. We first investigate consistency requirements among the finite-dimensional collections of the elements of a regularly-varying time series. We define the tail pairwise dependence function (TPDF) to quantify the extremal dependence between two elements of the regularly-varying time series, and use the TPDF to define the concept of weak tail stationarity for regularly varying time series. To develop our non-negative regularly varying ARMA-like time series models, we use transformed-linear operations. We show existence and stationarity of these models and develop their properties, such as the model TPDF's. Motivated by investigating conditions conducive to the spread of wildfires, we fit models to hourly windspeed data and find that the fitted transformed-linear models produce better estimates of upper tail quantities than alternative models.
翻译:为了捕捉时间序列上尾部的依赖性,我们开发了与古典非极端ARMA模型类似的非消极定期变化的时间序列模型。我们首先调查定期变化的时间序列元素的有限维数集合的一致性要求。我们定义了尾巴双向依赖功能(TPDF),以量化定期变化的时间序列中两个元素之间的极端依赖性,并利用TPDF来界定经常变化的时间序列中的弱尾部静态概念。为了开发我们非消极的定期变化的ARMA类似时间序列模型,我们使用了变换线性操作。我们展示了这些模型的存在和固定性,并开发了这些模型的特性,如TPDF模型。我们通过调查有利于野火蔓延的条件,将模型与小时风速数据相匹配,发现安装的变换线模型对尾巴数量比替代模型得出更好的估计。