The outbreak of the COVID-19 leads to a burst of information in major online social networks (OSNs). Facing this constantly changing situation, OSNs have become an essential platform for people expressing opinions and seeking up-to-the-minute information. Thus, discussions on OSNs may become a reflection of reality. This paper aims to figure out the distinctive characteristics of the Greater Region (GR) through conducting a data-driven exploratory study of Twitter COVID-19 information in the GR and related countries using machine learning and representation learning methods. We find that tweets volume and COVID-19 cases in GR and related countries are correlated, but this correlation only exists in a particular period of the pandemic. Moreover, we plot the changing of topics in each country and region from 2020-01-22 to 2020-06-05, figuring out the main differences between GR and related countries.
翻译:COVID-19的爆发导致主要在线社交网络(OSNs)信息的破灭,面对这种不断变化的情况,OSNs已成为人们发表意见和寻求最新信息的重要平台,因此,关于OSNs的讨论可能反映现实,本文件旨在通过对GR和相关国家使用机器学习和代表性学习方法对Twitter COVID-19信息进行数据驱动的探索性研究,查明大区的独特性。我们发现,GR和相关国家的Twitter数量和COVID-19案例是相互关联的,但这种关联性仅在流行病的特定时期存在。此外,我们描述了从2020-01-22-2020-06-05年到2020-05年每个国家和地区的主题变化情况,找出GR和相关国家的主要差异。