Online computation is a concept to model uncertainty where not all information on a problem instance is known in advance. An online algorithm receives requests which reveal the instance piecewise and has to respond with irrevocable decisions. Often, an adversary is assumed that constructs the instance knowing the deterministic behavior of the algorithm. Thus, the adversary is able to tailor the input to any online algorithm. From a game theoretical point of view, the adversary and the online algorithm are players in an asymmetric two-player game. To overcome this asymmetry, the online algorithm is equipped with an isomorphic copy of the graph, which is referred to as unlabeled map. By applying the game theoretical perspective on online graph problems, where the solution is a subset of the vertices, we analyze the complexity of these online vertex subset games. For this, we introduce a framework for reducing online vertex subset games from TQBF. This framework is based on gadget reductions from 3-SATISFIABILITY to the corresponding offline problem. We further identify a set of rules for extending the 3-SATISFIABILITY-reduction and provide schemes for additional gadgets which assure that these rules are fulfilled. By extending the gadget reduction of the vertex subset problem with these additional gadgets, we obtain a reduction for the corresponding online vertex subset game. At last, we provide example reductions for online vertex subset games based on VERTEX COVER, INDEPENDENT SET, and DOMINATING SET, proving that they are PSPACE-complete. Thus, this paper establishes that the online version with a map of NP-complete vertex subset problems form a large class of PSPACE-complete problems.
翻译:暂无翻译