For more than a century, scientists have been collecting behavioral data--an increasing fraction of which is now being publicly shared so other researchers can reuse them to replicate, integrate or extend past results. Although behavioral data is fundamental to many scientific fields, there is currently no widely adopted standard for formatting, naming, organizing, describing or sharing such data. This lack of standardization is a major bottleneck for scientific progress. Not only does it prevent the effective reuse of data, it also affects how behavioral data in general are processed, as non-standard data calls for custom-made data analysis code and prevents the development of efficient tools. To address this problem, we develop the Behaverse Data Model (BDM), a standard for structuring behavioral data. Here we focus on major concepts in behavioral data, leaving further details and developments to the project's website (https://behaverse.github.io/data-model/).


翻译:一个多世纪以来,科学家一直在收集行为数据,其中越来越多的部分数据现在正在公开分享,以便其他研究人员能够再利用这些数据复制、整合或扩展过去的结果。虽然行为数据对许多科学领域至关重要,但目前没有广泛采用的标准来格式化、命名、组织、描述或分享此类数据。这种缺乏标准化是科学进步的一个主要瓶颈。它不仅防止了数据的有效再利用,还影响到一般行为数据的处理方式,因为非标准数据需要定制的数据分析代码,也妨碍了有效工具的开发。为了解决这一问题,我们开发了“行为数据模型”,这是构建行为数据的标准。我们在这里侧重于行为数据的主要概念,将进一步的细节和发展留给项目网站(http://behaverse.github.io/data-model/)。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【论文】结构GANs,Structured GANs,
专知会员服务
15+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
156+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Arxiv
3+阅读 · 2020年2月5日
Learning Recommender Systems from Multi-Behavior Data
Arxiv
7+阅读 · 2018年11月29日
Arxiv
6+阅读 · 2016年1月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员