Fingerprinting Radio Frequency (RF) emitters typically involves finding unique emitter characteristics that are featured in their transmitted signals. These fingerprints are nuanced but sufficiently detailed, motivating the pursuit of methods that can successfully extract them. The most granular downstream task is known as Specific Emitter Identification (SEI), which requires a well informed RF fingerprinting (RFF) approach for it to be successful. RFF and SEI have a long history, with numerous application areas in defence and civilian contexts such as signal intelligence, electronic surveillance, physical-layer authentication of wireless communication devices, to name a few. RFF methods also support many other downstream tasks such as Emitter Data Association (EDA) and RF Emitter Clustering (RFEC) and are applicable to a range of transmission types. In recent years, data-driven approaches have become popular in the RFF domain due to their ability to automatically learn intricate fingerprints from raw data. These methods generally deliver superior performance when compared to traditional techniques. The more traditional approaches are often labour-intensive, inflexible and only applicable to a particular emitter type or transmission scheme. Therefore, we consider data-driven Machine Learning (ML)-enabled RFF. In particular, we propose a generic framework for ML-enabled RFF which is inclusive of several popular downstream tasks such as SEI, EDA and RFEC. Each task is formulated as a RF fingerprint-dependent task. A variety of use cases using real RF datasets are presented here to demonstrate the framework for a range of tasks and application areas, such as spaceborne surveillance, signal intelligence and countering drones.


翻译:射频(RF)发射器指纹识别通常涉及从发射信号中提取独特的发射器特征。这些指纹虽细微但足够具体,这促使人们寻求能够成功提取它们的方法。最精细的下游任务称为特定发射器识别(SEI),其成功实施需要一种信息充分的射频指纹(RFF)方法。RFF与SEI具有悠久的历史,在国防和民用领域拥有众多应用场景,例如信号情报、电子监视、无线通信设备的物理层认证等。RFF方法还支持许多其他下游任务,如发射器数据关联(EDA)和射频发射器聚类(RFEC),并适用于多种传输类型。近年来,数据驱动方法因其能够从原始数据中自动学习复杂指纹而在RFF领域日益流行。与传统技术相比,这些方法通常能提供更优越的性能。而传统方法往往劳动密集、缺乏灵活性,且仅适用于特定发射器类型或传输方案。因此,我们关注数据驱动的机器学习(ML)赋能RFF。特别地,我们提出了一种通用的ML赋能RFF框架,该框架涵盖SEI、EDA和RFEC等多个常见下游任务。每个任务均被表述为依赖射频指纹的任务。本文通过使用真实射频数据集的多种用例,展示了该框架在星载监视、信号情报及反无人机等不同任务和应用领域的适用性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
12+阅读 · 2019年2月26日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员