Background and Objectives: Reproducibility is a major challenge in developing machine learning (ML)-based solutions in computational pathology (CompPath). The NCI Imaging Data Commons (IDC) provides >120 cancer image collections according to the FAIR principles and is designed to be used with cloud ML services. Here, we explore its potential to facilitate reproducibility in CompPath research. Methods: Using the IDC, we implemented two experiments in which a representative ML-based method for classifying lung tumor tissue was trained and/or evaluated on different datasets. To assess reproducibility, the experiments were run multiple times with separate but identically configured instances of common ML services. Results: The AUC values of different runs of the same experiment were generally consistent. However, we observed small variations in AUC values of up to 0.045, indicating a practical limit to reproducibility. Conclusions: We conclude that the IDC facilitates approaching the reproducibility limit of CompPath research (i) by enabling researchers to reuse exactly the same datasets and (ii) by integrating with cloud ML services so that experiments can be run in identically configured computing environments.
翻译:背景和目的:在开发机器学习(ML)为主导的计算病理学(CompPath)的解决方案过程中,可重复性是一个主要挑战。NCI影像数据共享中心(IDC)根据FAIR原则提供了120多个癌症图像数据集,并设计为可与云ML服务一起使用。本文旨在探讨其在促进CompPath研究中实现可重复性的潜力。方法:利用IDC,我们实现了两个实验,分别使用代表性的ML方法对肺癌组织进行分类,分别在不同的数据集上进行训练和/或评估。为了评估可重复性,我们使用相同但配置不同的常见ML服务多次运行实验。结果:相同实验的不同运行的AUC值基本一致。但是,我们观察到AUC值小型波动高达0.045,表明实用重复性存在一定限制。结论:我们得出结论,通过启用研究人员重新使用完全相同的数据集,以及通过与云ML服务集成,使得相同配置的计算环境可以运行实验,IDC有助于实现CompPath研究的可重复性极限。