Modeling the ideological perspectives of political actors is an essential task in computational political science with applications in many downstream tasks. Existing approaches are generally limited to textual data and voting records, while they neglect the rich social context and valuable expert knowledge for holistic ideological analysis. In this paper, we propose \textbf{PAR}, a \textbf{P}olitical \textbf{A}ctor \textbf{R}epresentation learning framework that jointly leverages social context and expert knowledge. Specifically, we retrieve and extract factual statements about legislators to leverage social context information. We then construct a heterogeneous information network to incorporate social context and use relational graph neural networks to learn legislator representations. Finally, we train PAR with three objectives to align representation learning with expert knowledge, model ideological stance consistency, and simulate the echo chamber phenomenon. Extensive experiments demonstrate that PAR is better at augmenting political text understanding and successfully advances the state-of-the-art in political perspective detection and roll call vote prediction. Further analysis proves that PAR learns representations that reflect the political reality and provide new insights into political behavior.
翻译:将政治行为者的意识形态观点建模,是计算政治学和许多下游任务应用中的一项基本任务。现有办法一般限于文字数据和投票记录,而忽视丰富的社会背景和用于整体意识形态分析的宝贵专家知识。在本文中,我们提议了\ textbf{PAR},一个textbf{P}/textbf{A}ctor \ textbf{R}展示学习框架,共同利用社会背景和专家知识。具体地说,我们检索和提取关于立法者的事实陈述,以利用社会背景信息。然后,我们建立一个多样化的信息网络,以纳入社会背景,并利用关系图表神经网络学习立法者代表。最后,我们培训PAR,有三个目标:使代表性学习与专家知识、意识形态模式的一致性以及模拟回声室现象相一致。广泛的实验表明,PAR在增加政治文本理解和成功推进政治视角探测和点票预测方面的状态。进一步分析证明,PAR学习反映政治现实和对政治行为提供新的洞察力。