Automating tissue segmentation and tumor detection in histopathology images of colorectal cancer (CRC) is an enabler for faster diagnostic pathology workflows. At the same time it is a challenging task due to low availability of public annotated datasets and high variability of image appearance. The semi-supervised learning for CRC detection (SemiCOL) challenge 2023 provides partially annotated data to encourage the development of automated solutions for tissue segmentation and tumor detection. We propose a U-Net based multi-task model combined with channel-wise and image-statistics-based color augmentations, as well as test-time augmentation, as a candidate solution to the SemiCOL challenge. Our approach achieved a multi-task Dice score of .8655 (Arm 1) and .8515 (Arm 2) for tissue segmentation and AUROC of .9725 (Arm 1) and 0.9750 (Arm 2) for tumor detection on the challenge validation set. The source code for our approach is made publicly available at https://github.com/lely475/CTPLab_SemiCOL2023.
翻译:自动化结直肠癌(CRC)组织切片中的组织分割和肿瘤检测是加速快速的诊断病理学工作流程的关键。然而,由于公共注释数据集的缺乏和图像外观的高度可变性,这是一项具有挑战性的任务。CRC检测的半监督学习(SemiCOL)挑战2023提供部分注释的数据,以鼓励自动化解决方案的开发,用于组织分割和肿瘤检测。我们提出了一种基于U-Net的多任务模型,结合基于通道和图像统计的颜色增强以及测试时间增强,作为SemiCOL挑战的候选解决方案。我们的方法在挑战验证集上实现了多任务Dice评分为0.8655(Arm 1)和0.8515(Arm 2)的组织分割以及AUROC为0.9725(Arm 1)和0.9750(Arm 2)的肿瘤检测。我们方法的源代码已公开发布于https://github.com/lely475/CTPLab_SemiCOL2023.