This paper investigates the robust and secure task transmission and computation scheme in multi-antenna unmanned aerial vehicle (UAV)-assisted mobile edge computing (MEC) networks, where the UAV is dual-function, i.e., aerial MEC and aerial relay. The channel uncertainty is considered during information offloading and downloading. An energy consumption minimization problem is formulated under some constraints including users' quality of service and information security requirements and the UAV's trajectory's causality, by jointly optimizing the CPU frequency, the offloading time, the beamforming vectors, the artificial noise and the trajectory of the UAV, as well as the CPU frequency, the offloading time and the transmission power of each user. To solve the non-convex problem, a reformulated problem is first derived by a series of convex reformation methods, i.e., semi-definite relaxation, S-Procedure and first-order approximation, and then, solved by a proposed successive convex approximation (SCA)-based algorithm. The convergence performance and computational complexity of the proposed algorithm are analyzed. Numerical results demonstrate that the proposed scheme outperform existing benchmark schemes. Besides, the proposed SCA-based algorithm is superior to traditional alternative optimization-based algorithm.


翻译:本文调查了无人驾驶飞行器(UAV)辅助机动边缘计算(MEC)网络中的稳健和安全任务传输和计算办法,UAV具有双重功能,即航空MEC和航空中继。在信息卸载和下载过程中,考虑到频道的不确定性。根据一些限制因素,包括用户服务质量和信息安全要求的质量以及UAV的轨迹的因果关系,形成了能源消耗最小化问题,共同优化CPU频率、卸载时间、波形矢量、UAV的人工噪声和轨迹以及CPU频率、卸载时间和每个用户的传输能力。为了解决非convex问题,首先从一系列convex改革方法(即半确定性放松、S-Procedure和一阶近似)得出了能源消耗最小化的问题,然后通过拟议的基于convex的连续近似近似算法(SCA)解决了这一问题。拟议的CUUPO频率、卸载时间和计算方法的趋同性和计算复杂性,以及每一个用户的频率、卸载时间和传输能力。为了解决了非电流问题,为了解决非convex问题,首先从一系列的重新确定一个重新拟订的螺旋算算法方法,这是拟议的新式的变现式标准级平比级算法方案的结果结果,分析了拟议的新式的公式,这是上的变式的后算算法方案,它法方案是分析了拟议的新式的变式的变式的变式的变式的变后算法。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月7日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
19+阅读 · 2020年7月13日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员