We present conservative 3+1 general relativistic variable Eddington tensor radiation transport equations, including greater elaboration of the momentum space divergence (that is, the energy derivative term) than in previous work. These equations are intended for use in simulations involving numerical relativity, particularly in the absence of spherical symmetry. The independent variables are the lab frame coordinate basis spacetime position coordinates and the particle energy measured in the comoving frame. With an eye towards astrophysical applications---such as core-collapse supernovae and compact object mergers---in which the fluid includes nuclei and/or nuclear matter at finite temperature, and in which the transported particles are neutrinos, we pay special attention to the consistency of four-momentum and lepton number exchange between neutrinos and the fluid, showing the term-by-term cancellations that must occur for this consistency to be achieved.


翻译:我们提出了保守的3+1一般相对论变量Eddington高频辐射传输方程式,包括比以前的工作更详细地阐述动力空间差异(即能源衍生物术语),这些方程式用于模拟数字相对性,特别是在没有球体对称的情况下。独立的变量是实验室框架协调基空间时间位置坐标和在组合框架中测量的粒子能量。我们着眼于天体物理应用,例如核心折叠超新星和紧凑物体合并,其中液体包括核核和/或定温核物质,运输的粒子是中微子,我们特别注意中微子和流体之间四色调和列普顿数交换的一致性,显示实现这种一致性必须按期取消。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
110+阅读 · 2020年3月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
一文读懂依存句法分析
AINLP
16+阅读 · 2019年4月28日
别说还不懂依存句法分析
人工智能头条
23+阅读 · 2019年4月8日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
4+阅读 · 2019年12月2日
Arxiv
6+阅读 · 2018年10月3日
Arxiv
8+阅读 · 2018年5月21日
Arxiv
5+阅读 · 2018年1月30日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
110+阅读 · 2020年3月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
相关资讯
一文读懂依存句法分析
AINLP
16+阅读 · 2019年4月28日
别说还不懂依存句法分析
人工智能头条
23+阅读 · 2019年4月8日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员