The Tsetlin Machine (TM) is a novel machine learning algorithm with several distinct properties, including transparent inference and learning using hardware-near building blocks. Although numerous papers explore the TM empirically, many of its properties have not yet been analyzed mathematically. In this article, we analyze the convergence of the TM when input is non-linearly related to output by the XOR-operator. Our analysis reveals that the TM, with just two conjunctive clauses, can converge almost surely to reproducing XOR, learning from training data over an infinite time horizon. Furthermore, the analysis shows how the hyper-parameter T guides clause construction so that the clauses capture the distinct sub-patterns in the data. Our analysis of convergence for XOR thus lays the foundation for analyzing other more complex logical expressions. These analyses altogether, from a mathematical perspective, provide new insights on why TMs have obtained state-of-the-art performance on several pattern recognition problems
翻译:Tsetlin Machine (TM) 是一种创新的机器学习算法, 具有若干不同的特性, 包括透明的推论和使用硬件附近建筑块学习。 虽然许多论文对TM 进行了实验性探讨, 但其许多属性尚未进行数学分析 。 在本篇文章中, 我们分析了当输入与 XOR 操作器输出非线性相关时TM 的趋同性。 我们的分析显示, TM 仅有两个连带条款, 几乎可以肯定地重新生成 XOR, 从无限时间跨度的培训数据中学习 。 此外, 分析还显示了超参数 指南 条款的构建方式, 从而将数据中不同的子类型包含在内 。 因此, 我们对 XOR 的趋同性的分析为分析其他更为复杂的逻辑表达方式奠定了基础 。 从数学角度来看, 这些分析完全提供了新的见解, 说明为什么 TMs 在若干模式识别问题上获得了最先进的表现 。