Streaming keyword spotting is a widely used solution for activating voice assistants. Deep Neural Networks with Hidden Markov Model (DNN-HMM) based methods have proven to be efficient and widely adopted in this space, primarily because of the ability to detect and identify the start and end of the wake-up word at low compute cost. However, such hybrid systems suffer from loss metric mismatch when the DNN and HMM are trained independently. Sequence discriminative training cannot fully mitigate the loss-metric mismatch due to the inherent Markovian style of the operation. We propose an low footprint CNN model, called HEiMDaL, to detect and localize keywords in streaming conditions. We introduce an alignment-based classification loss to detect the occurrence of the keyword along with an offset loss to predict the start of the keyword. HEiMDaL shows 73% reduction in detection metrics along with equivalent localization accuracy and with the same memory footprint as existing DNN-HMM style models for a given wake-word.


翻译:Streaming 关键词定位是激活语音助理的一种广泛使用的解决方案。 以隐藏 Markov 模型( DNN-HMM) 为基础的深神经网络方法已证明是高效的,并在此空间得到广泛采用,这主要是因为能够以低计算成本探测和识别警醒词的开始和结束,然而,当DNN 和 HMM独立培训时,这种混合系统会遭受损失指标不匹配。由于操作固有的Markovian 风格, 顺序歧视培训无法完全减轻损失计量不匹配。 我们提议使用一个低足迹的CNN 模式,称为HEIMDaL, 以探测和定位流传条件中的关键词。 我们采用了基于校对的分类损失,以探测关键词的发生情况,同时抵消损失以预测关键词的开始。 HEIMDAL 显示,探测指标减少73%,同时具有同等的本地化精确度,并且与给定的DNN- HMM 风格模型相同的记忆足迹。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年12月12日
Arxiv
0+阅读 · 2022年12月12日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员