Language models (LMs) pre-trained on massive amounts of text, in particular bidirectional encoder representations from Transformers (BERT), generative pre-training (GPT), and GPT-2, have become a key technology for many natural language processing tasks. In this paper, we present results using fine-tuned GPT, GPT-2, and their combination for automatic speech recognition (ASR). Unlike unidirectional LM GPT and GPT-2, BERT is bidirectional whose direct product of the output probabilities is no longer a valid language prior probability. A conversion method is proposed to compute the correct language prior probability based on bidirectional LM outputs in a mathematically exact way. Experimental results on the widely used AMI and Switchboard ASR tasks showed that the combination of the fine-tuned GPT and GPT-2 outperformed the combination of three neural LMs with different architectures trained from scratch on the in-domain text by up to a 12% relative word error rate reduction (WERR). Furthermore, on the AMI corpus, the proposed conversion for language prior probabilities enables BERT to obtain an extra 3% relative WERR, and the combination of BERT, GPT and GPT-2 results in further improvements.
翻译:语言模型(LMS)在大量文本上经过预先培训,特别是来自变换器(变换器)的双向编码显示器(双向编码显示器)、基因培训前(GPT)和GPT-2,已经成为许多自然语言处理任务的一项关键技术。在本文中,我们采用微调的GPT、GPT-2及其自动语音识别组合(ASR)来介绍结果。与单向LMGPT和GPT-2不同的是双向的,其产出概率的直接产物不再是有效语言的先前概率。建议一种转换方法,以精确的数学方式根据双向LMM输出计算正确的语言先前概率。广泛使用的AMI和开关板ASR任务的实验结果表明,微调的GPT和GPT-2组合超过了三部神经立体的组合,从表面文字上的刮痕中训练了不同的结构,其结果是12%相对的错误率降低(WERR)。此外,在AMI系统中,拟议在语言前双向危险状态下对语言进行转换,使GPT-BERM3的对比改进结果得到额外的结果。