This paper offers a new algorithm to efficiently optimize scheduling decisions for dial-a-ride problems (DARPs), including problem variants considering electric and autonomous vehicles (e-ADARPs). The scheduling heuristic, based on linear programming theory, aims at finding minimal user ride time schedules in polynomial time. The algorithm can either return optimal feasible routes or it can return incorrect infeasibility declarations, on which feasibility can be recovered through a specifically-designed heuristic. The algorithm is furthermore supplemented by a battery management algorithm that can be used to determine charging decisions for electric and autonomous vehicle fleets. Timing solutions from the proposed scheduling algorithm are obtained on millions of routes extracted from DARP and e-ADARP benchmark instances. They are compared to those obtained from a linear program, as well as to popular scheduling procedures from the DARP literature. Results show that the proposed procedure outperforms state-of-the-art scheduling algorithms, both in terms of compute-efficiency and solution quality.


翻译:本文提出了一种新的算法,可以有效地优化派车问题(DARP)的调度决策,包括考虑电动和自动驾驶车辆(e-ADARP)的问题变体。基于线性规划理论的调度启发式旨在在多项式时间内找到最小的用户乘车时间表。该算法可以返回最优的可行路线,也可以返回不正确的不可行声明,从而可以通过专门设计的启发式来恢复可行性。此外,该算法还配备了一种电池管理算法,用于确定电动和自动驾驶车队的充电决策。从DARP和e-ADARP基准实例中提取的数百万条路径的时间解决方案。它们与从线性程序中获得的计时解决方案以及从DARP文献中流行的调度程序进行了比较。结果表明,所提出的程序在计算效率和解决方案质量方面优于最先进的调度算法。

0
下载
关闭预览

相关内容

斯坦福大学最新【强化学习】2022课程,含ppt
专知会员服务
120+阅读 · 2022年2月27日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
重磅开讲:图灵奖得主—— Joseph Sifakis
THU数据派
0+阅读 · 2022年6月13日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月5日
Arxiv
0+阅读 · 2023年6月4日
Arxiv
0+阅读 · 2023年6月3日
Arxiv
24+阅读 · 2020年3月11日
VIP会员
相关VIP内容
相关资讯
重磅开讲:图灵奖得主—— Joseph Sifakis
THU数据派
0+阅读 · 2022年6月13日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员