Malware is one of the most common and severe cyber-attack today. Malware infects millions of devices and can perform several malicious activities including mining sensitive data, encrypting data, crippling system performance, and many more. Hence, malware detection is crucial to protect our computers and mobile devices from malware attacks. Deep learning (DL) is one of the emerging and promising technologies for detecting malware. The recent high production of malware variants against desktop and mobile platforms makes DL algorithms powerful approaches for building scalable and advanced malware detection models as they can handle big datasets. This work explores current deep learning technologies for detecting malware attacks on the Windows, Linux, and Android platforms. Specifically, we present different categories of DL algorithms, network optimizers, and regularization methods. Different loss functions, activation functions, and frameworks for implementing DL models are presented. We also present feature extraction approaches and a review of recent DL-based models for detecting malware attacks on the above platforms. Furthermore, this work presents major research issues on malware detection including future directions to further advance knowledge and research in this field.
翻译:恶意软件是当今最常见和最严重的网络攻击之一。 恶意软件感染了数百万个装置,并能够进行若干恶意活动,包括采矿敏感数据、加密数据、系统性能瘫痪等。 因此, 恶意软件的检测对于保护我们的计算机和移动设备免遭恶意软件袭击至关重要。 深度学习( DL) 是发现恶意软件的新兴和有希望的技术之一。 最近对桌面和移动平台大量生成的恶意软件变异软件使得DL算法在建立可扩缩和先进的恶意软件检测模型方面产生了强大的方法,因为它们能够处理大数据集。 这项工作探索了当前用于检测视窗、 Linux 和安卓平台恶意软件袭击的深层次学习技术。 具体而言,我们提出了不同类别的DL算法、网络优化和正规化方法。 介绍了不同的损失功能、启动功能和执行DL模型的框架。 我们还介绍了基于DL的功能提取方法和审查最近用于检测上述平台恶意软件袭击的基于DL的模型。 此外,这项工作提出了关于恶意软件检测的主要研究问题,包括进一步推进该领域知识和研究的方向。