The number of new infections per day is a key quantity for effective epidemic management. It can be estimated relatively directly by testing of random population samples. Without such direct epidemiological measurement, other approaches are required to infer whether the number of new cases is likely to be increasing or decreasing: for example, estimating the pathogen effective reproduction number, R, using data gathered from the clinical response to the disease. For Covid-19 (SARS-CoV-2) such R estimation is heavily dependent on modelling assumptions, because the available clinical case data are opportunistic observational data subject to severe temporal confounding. Given this difficulty it is useful to retrospectively reconstruct the time course of infections from the least compromised available data, using minimal prior assumptions. A Bayesian inverse problem approach applied to UK data on first wave Covid-19 deaths and the disease duration distribution suggests that fatal infections were in decline before full UK lockdown (24 March 2020), and that fatal infections in Sweden started to decline only a day or two later. An analysis of UK data using the model of Flaxman et al. (2020, Nature 584) gives the same result under relaxation of its prior assumptions on R, suggesting an enhanced role for non pharmaceutical interventions (NPIs) short of full lock down in the UK context. Similar patterns appear to have occurred in the subsequent two lockdowns.


翻译:每天新感染的人数是有效流行病管理的关键,可以通过随机人口样本的检测来相对直接估计。如果没有这种直接的流行病学测量,就需要采取其他方法来推断新病例的数量是否可能在增加或减少:例如,利用临床对疾病的反应所收集的数据估计病原体有效生殖数,R,R,使用从临床对疾病的反应中收集的数据。对于Covid-19(萨斯-科沃-2)来说,这种R估计在很大程度上取决于模型假设,因为现有的临床病例数据是机会性观察数据,容易在时间上出现严重混乱。鉴于这一困难,利用最低的先前假设,从最不易受损的可用数据追溯性地重建感染的时间过程是有用的。对联合王国关于第一波乔维-19死亡和疾病持续时间分布的数据采用的巴耶斯反问题方法表明,致命感染在联合王国全面封闭之前(2020年3月24日)就已经下降,瑞典致命感染仅仅在一天或两天后开始下降。利用Flaxman等人的模式对联合王国的数据进行了分析(20,自然584)显示,在放松其先前关于R型现有数据时程的假设之后,同样的结果也是一样,表明联合王国在随后的完全停止。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员