We propose a microscopic model to describe the dynamics of the fundamental events in the limit order book (LOB): order arrivals and cancellations. It is based on an operator algebra for individual orders and describes their effect on the LOB. The model inputs are arrival and cancellation rate distributions that emerge from individual behavior of traders, and we show how prices and liquidity arise from the LOB dynamics. In a simulation study we illustrate how the model works and highlight its sensitivity with respect to assumptions regarding the collective behavior of market participants. Empirically, we test the model on a LOB snapshot of XETRA, estimate several linearized model specifications, and conduct in- and out-of-sample forecasts.The in-sample results based on contemporaneous information suggest that our model describes returns very well, resulting in an adjusted $R^2$ of roughly 80%. In the more realistic setting where only past information enters the model, we observe an adjusted $R^2$ around 15%. The direction of the next return can be predicted (out-of-sample) with an accuracy above 75% for time horizons below 10 minutes. On average, we obtain an RMSPE that is 10 times lower than values documented in the literature.
翻译:我们提出了一个微缩模型,用来描述限制订单书(LOB)中基本事件动态:到货和取消的动态。该模型基于操作者对单单订单的代数代数,并描述其对LOB的影响。模型输入是交易商个人行为所产生的到货和取消率分布,我们展示了LOB动态如何产生价格和流动性。在模拟研究中,我们说明了模型如何运作,并突出其对市场参与者集体行为假设的敏感性。我们很生动地测试XETRALLOB快照模型,估计若干线性模型规格,并进行模拟和模拟外的预测。根据同时期信息得出的抽样结果表明,我们的模型描述回报非常好,导致大约80%的美元调整。在只有过去信息才进入模型的更现实的环境下,我们观察到了大约15%的调整后的美元2美元。下一次返回的方向可以预测(外),在低于10分钟的时平面的精确度超过75%。平均时间,我们获得了10分钟的文献记录值。