We study the problem of allocating indivisible goods among $n$ agents with the objective of maximizing Nash social welfare (NSW). This welfare function is defined as the geometric mean of the agents' valuations and, hence, it strikes a balance between the extremes of social welfare (arithmetic mean) and egalitarian welfare (max-min value). Nash social welfare has been extensively studied in recent years for various valuation classes. In particular, a notable negative result is known when the agents' valuations are complement-free and are specified via value queries: for XOS valuations, one necessarily requires exponentially many value queries to find any sublinear (in $n$) approximation for NSW. Indeed, this lower bound implies that stronger query models are needed for finding better approximations. Towards this, we utilize demand oracles and XOS oracles; both of these query models are standard and have been used in prior work on social welfare maximization with XOS valuations. We develop the first sublinear approximation algorithm for maximizing Nash social welfare under XOS valuations, specified via demand and XOS oracles. Hence, this work breaks the $O(n)$-approximation barrier for NSW maximization under XOS valuations. We obtain this result by developing a novel connection between NSW and social welfare under a capped version of the agents' valuations. In addition to this insight, which might be of independent interest, this work relies on an intricate combination of multiple technical ideas, including the use of repeated matchings and the discrete moving knife method.


翻译:我们研究了在美元代理商之间分配不可分割货物的问题,目的是最大限度地增加纳什社会福利(新南威尔士州)。这一福利功能被定义为代理人估值的几何平均值,从而在社会福利(最高平均值)和平等福利(最大值)的极端(最大值)之间取得平衡。近年来,对各种估值类别都对纳什社会福利进行了广泛研究。特别是,当代理人估值是无补充的,并通过价值查询加以具体说明时,就可发现一个显著的负面结果:对于XOS估值,一个必然需要大量价值查询才能为新南威尔士州找到任何亚线(以美元为单位)反复的近似。事实上,这一下限意味着需要更强的查询模型才能找到更好的近似。为此,我们使用了需求或手势和XOS或手法;这两个查询模型都是标准的,在以前关于社会福利最大化的工作中使用了XOS估值。我们开发了第一个次线近似精度估算值组合,在XOS估值中,通过需求与XOS或最高端点指定,为新线排序。因此,这项工作需要更强烈的查询模式来寻找更好的查询模型模型模型,在XSW值的多重价值评估下,从而打破了这种升级的升级的升级的增值的增值,从而可能打破了XSW的增值法。我们获得新的的增值。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月26日
Arxiv
0+阅读 · 2021年11月26日
Arxiv
0+阅读 · 2021年11月25日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员